If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+42x-3=0
a = 3; b = 42; c = -3;
Δ = b2-4ac
Δ = 422-4·3·(-3)
Δ = 1800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1800}=\sqrt{900*2}=\sqrt{900}*\sqrt{2}=30\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-30\sqrt{2}}{2*3}=\frac{-42-30\sqrt{2}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+30\sqrt{2}}{2*3}=\frac{-42+30\sqrt{2}}{6} $
| -2k+8k=24 | | Xx3+2=13 | | 5-2x=9 | | 2x^2+42x-3=0 | | 4x=5x-160 | | 15+5r=-10 | | -3x+7-4x=10+11 | | (45x+300)(85x-0.5x^2)=50 | | 5(t+10)=80 | | 2(-1+k)=14 | | 12x-22+7x+18=10x-6 | | -2u-1=-10-3u | | n/6+-83=-77 | | -3/4+1/20x=-1/2 | | (45x+300)-(85x-0.5x^2)=50 | | 6k=3k+9 | | (2(x)+6)+36+x=180 | | -8(b-94)=-32 | | -8g-1=9-9g | | (2(x)+6)+36-x=180 | | 12x–4(8x–2)=59+9 | | -2(p-98)=64 | | s=150/5 | | -2d+5=-d | | b-0.8=0.12 | | 135+(5x-4)+(3x+31)+(4x+15)+(6x-8)+120+(7x-64)=900 | | 4x-2+2x=6x+2 | | 4n=7-10n | | 70=2(m-15) | | -2x-(-5)=71 | | 4m2+8m+3=0 | | Y=26x+65 |